
PIANC Asian Seminar 2025

Decision making criteria between conservation and development

Dr. Suk-Jae Kwon
Republic of Korea
Technical Session Co-Chair

Suk-Jae Kwon currently a Principal Research Scientist at the Korea Institute of Ocean Science and Technology(KIOST). He also plays a role in PEMSEA as a Co-Chair of Technical Session. He is also an adjunct professor in Pukyung National University.

Previously, he held the role of Director of the International Cooperation Department of the same institution, vice president of the Marine Biodiversity Institute of Korea(MABIK), and president of Korean Society of Marine Environment and Safety.

He has more than 20 years of experience in economic evaluation of marine environmental and natural resources, marine disaster assessment, and integrated coastal zone management.

He received my Ph.D in Environmental and Natural Resource Economics at the University of Rhode Island in the United States, and completed his Bachelor's and Master's degrees in Economics at the Sungyunkwan University in the Republic of Korea.

Ocean Regime and issues

3

Climate Change and Natural Disaster

Morocco earthquake kills more than 2,000

Hurricane in Florida

Fire in Texas

California Floods

4

Ocean waste problem

World Clean-up day (Ghana)

Great Pacific Garbage Patch

Garbage Island – Great Pacific Garbage Patch

The currents in these Gyres are circular in nature

Wetland loss and degradation

Over a third of the world's wetlands have disappeared since 1970.

83% of freshwater species are in decline worldwide.

86% of rivers in the UK don't meet good ecological status.

7

Global risks ranked by severity over the short and long term

Key issues(terminology) of Ocean:

- Natural disasters due to climate change
- Ocean waste (debris)
- Wetland loss and degradation due to development
- Blue Economy, Green Technology, Blue Carbon

9

Ocean governance and treatment

Millennium Development Goals(MDGs)

The eight Millennium Development Goals (MDGs) – which range from halving extreme poverty rates to halting the spread of HIV/AIDS and providing universal primary education, all by the target date of 2015

.

The United Nations Millennium Development

Sustainable Development Goals(SDGs)

UN Ocean Decade

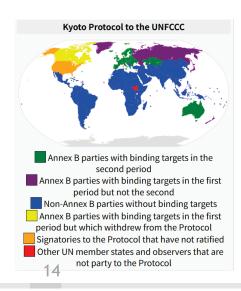
BECOME A MEMBER OF THE

OCEAN DECADE ALLIANCE

JOIN GENERATION OCEAN It is everyone's Decade! "Gen0" convene living and future generations to build a kind of society by 2030, one in which all humanity will use the best available sci

13

Ⅱ. KIOST의 해양과학기술 공유 플랫폼



Ramsar Convention on Wetlands of International Importance Especially as Waterfowl Habitat

Target 3 Conserve 30% of Land, Waters and Seas

15

Criteria for decision making b/w conservation and development: B/C Analysis

Decision Criteria

Compare Benefits and Costs of an Action.

- If Benefits > Costs, take the action.
- ➤ If Costs > Benefits, think other alternatives.

17

Predicted degradation in future Benefit of action Economic value Economic Economic value value Benefitcost analysis Increase in Econ. value Cost of act Cost of act Without **Ecosystem**

Cost-benefit Analyses for Decision-making

With

conservation in future

conservation

in future

benefits

today

Source: Adapted from Pagiola et al., 2004

Cost and benefit analysis(CBA)

- Net Present Value (NPV):순현가(純現價)
- BC Ratio:편익비용비(比)
- Internal Rate of Return(IRR): 내부수익률

19

II. KIOST의 해양과학기술 공유 플랫폼

Net Present Value (NPV):

$$NPV = \sum_{i=0}^{\infty} \frac{B_i - C_i}{(1+r)^i}$$

$$(t=0,1,2,\cdots,n)$$

BC Ratio:

$$\frac{B}{C} = \sum_{t=0}^{R} \frac{B_t}{(1+r)^t} / \sum_{t=0}^{R} \frac{C_t}{(1+r)^t}$$

Internal Rate of Return(IRR):

$$B_0 - C_0 = \sum_{t=0}^{R} \frac{(B_t - C_t)}{(1+r)^t} = 0$$

- Financial Cost and Benefit
- Environmental Cost and Benefit
- ✓ Cost = financial cost + environmental cost
- ✓ Benefit = financial Benefit + environmental benefit

21

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

Change in WTP or value

Value of wetland

Value of agricultural land

Level of income
Or Time

- ✓ At A reclamation projects are carried out to make agricultural land (destruction of wetlands)
- ✓ At B restoration (or conservation) projects are carried out.
- ✓ This results are due to change in value(or WTP) by level of income or awareness of value for public services (development of nonmarket valuation techniques).

Techniques for Non-market valuation

23

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

Total Economic Value

Use values

Non-use values

Non-use values

Non-use values

Non-use values

Structural values

(functional values)

Usually measures output

Usually measures benefits/services

Classification and Examples of Total Economic Values for Aquatic Ecosystem Services

Use Values		Nonuse Values
Direct	Indirect	Existence and Bequest Values
Commercial and recreational fishing Aquaculture	Nutrient retention and cycling Flood control	Cultural heritage Resources for future generations
Transportation Wild resources	Storm protection Habitat function	Existence of charis- matic species
Potable water Recreation	Shoreline and river bank stabilization	Existence of wild places

Genetic material

SOURCE: Adapted from Barbier (1994) and Barbier et al.
(1997).National Academies of Sciences, Engineering, and Medicine.

2005. Valuing Ecosystem Services: Toward Better Environmental Decision-Making. Washington, DC: The National Academies Press.

https://doi.org/10.17226/11139.

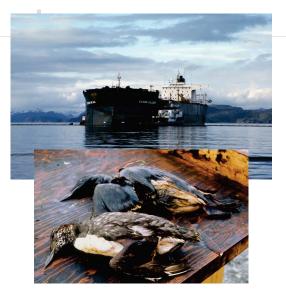
25

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

Scientific and educational

opportunities

Typical techniques for non-market valuation (use value and/or nonuse value)


- ➤ Contingent Valuation Method(CVM)
- ➤ Travel Cost Method(TCM)
- ➤ Hedonic Property Method & Hedonic Wage Method (HPM, HWM)

Exxon Valdes Oil Spill Accident and CVM

27

The *Exxon Valdez* oil spill was a major <u>environmental disaster</u> that occurred in <u>Alaska</u>'s <u>Prince William Sound</u> on March 24, 1989. The spill occurred when <u>Exxon Valdez</u>, an oil <u>supertanker</u> owned by <u>Exxon Shipping Company</u>, bound for <u>Long Beach</u>, California, struck <u>Prince William Sound</u>'s <u>Bligh Reef</u>, 6 mi (9.7 km) west of <u>Tatitlek</u>, <u>Alaska</u> at 12:04 a.m. The tanker <u>spilled</u> more than 10 million US gallons (240,000 bbl) (or 37,000 <u>tonnes</u>)^[1] of <u>crude oil</u> over the next few days.

It killed an estimated 250,000 sea birds, 3,000 otters, 300 seals, 250 bald eagles and 22 killer whales(nonuse value).

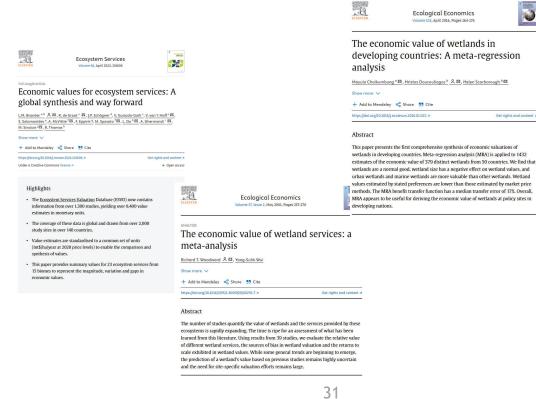
28

Two things are induced by Exxon Valdez Oil Spill Accident:

- 1. It is first time to compensate nonuse value in oil spill accident by using CVM
- 2. In the wake of the Exxon Valdez oil spill, the U.S. Congress passed the Oil Pollution Act of 1990, which President George H.W. Bush signed into law that year.

29

Ⅱ. KIOST의 해양과학기술 공유 플랫폼



Published articles relating to economic valuation of wetlands by using CVM, TCM, and HPM

Ecological Economics

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

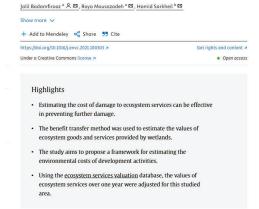
Ecological Economics Volume 2, Issue 2, June 1990, Pages 129-147

Economic value of wetlands-based recreation

John C. Bergstrom ¹, John R. Stoll ², John P. Titre ³, Vernon L. Wright ⁴ + Add to Mendeley 📽 Share 🗦 Cite https://doi.org/10.1016/0921-8009(90)90004-E > Get rights and content a

Abstract

The loss of wetlands is an issue of growing concern. Previous studies have focused primarily on quantifying the commercial, storm protection, and energy-output values of wetlands. Relatively little research has been devoted to quantifying the outdoor recreational value of wetlands. In this paper, the recreational value of wetlands is discussed conceptually within a total economic value framework. Total economic value contains many value components which are broadly divided into non-use, current use, and future use values. Each of these value categories can be further subdivided into expenditures and consumer's surplus.


An empirical study was conducted to measure expenditures and consumer's surplus associated with on-site, current recreational uses of a coastal wetlands area. Aggregate expenditures were estimated at approximately \$118 million and aggregate consumer's surplus was estimated at approximately \$27 million. These results suggest that the economic impacts and net economic benefits associated with wetlands-based recreation may be substantial. Hence, recreational functions provided by wetlands may be important considerations for wetlands policy and management.

Environmental Challenges

A proposed framework for economic valuation and assessment of damages cost to national wetlands ecosystem services using the benefit-transfer approach

Total economic value of wetland conservation in Sri Lanka identifying use and non-use values

Original Paper | Published: 28 December 2007 Volume 16, pages 359–369, (2008) <u>Cite this article</u>

Abstract

In tropical regions, mangroves, clean (unpolluted) water-bodies and fish are important aspects of wetland areas, which are considered as the basic requirement for livelihood improvement in local communities. Particularly, their conservation is very important to both inland as well as inshore fisheries. However, conservation of such areas is dependent on the perceptions of key stakeholders in the area. A novel approach of a one and one-half bound based contingent valuation method (CVM) was implemented to measure the stakeholder willingness to pay (WTP) towards the conservation of fish, mangroves and water in a Sri Lankan wetland area. Estimated median WTP is Rs. 264.26, which is thought reliable when considering average income in the community. The analytic hierarchy process (AHP) was used to separate use and non-use values from the total value. Results show that non-use values are a significant component in the elicited WTP value, of between 45-55%. In the past such commodities have been assigned zero or low values due to difficulties involved in assigning economic values.

33

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

HPM

Journal of Environmental Management Volume 34, Issue 1, January 1992, Pages 59-76

Valuing goods' characteristics: An application of the hedonic price method to environmental attributes

Landscape and Urban Planning
Volume 37, Issues 3–4, July 1997, Pages 211-222

The amenity value of the urban forest: an application of the hedonic pricing method

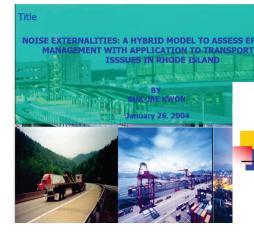
HPM

Journal of Environmental Management

Volume 127, 30 September 2013, Pages 289-299

The land value impacts of wetland restoration

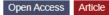
We test the impacts of aquatic restoration sites on nearby property values


- ••We find that un-restored wetlands consistently increase nearby property values.
- ••This finding may be due to restoration's poor public awareness and aesthetic problems.
- •• Within 0.5 mi, restoration sites decrease surrounding property
- ••However, over 0.5 mi, restoration sites increase property values significantly.

35

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

HPM



Potential Environmental Issues from Port Development

- Dredging and Dredge Disposal
- Loss of shoreline and bottom wetlands habitat
- Loss of open space amenities
- Noise and congestion on roads near the port
- Air pollution from mobile sources

Economic Valuation of Lake Tana: A Recreational Use Value Estimation through the Travel Cost Method

by Atalel Wubalem 1,* ☑, Teshale Woldeamanuel 2 and Zerihun Nigussie 1 0

- Department of Agricultural Economics
- Department of Natural Resource Ec
- * Author to whom correspondence shelsevier

Travel-cost method for assessing the monetary value of recreational services in the Ömerli Catchment

Nuket Ipek Cetin ^{a b} 🌣 , Gulhan Bourget ^c , Azime Tezer ^d

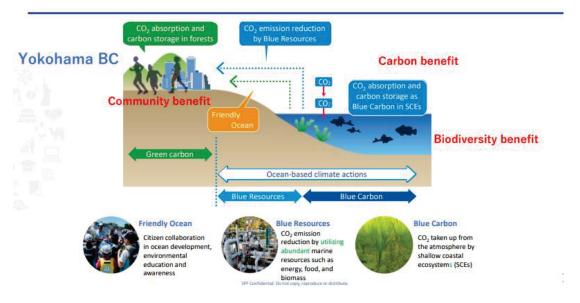
37

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

Wetland restoration and creation link to blue carbon: Case of Japan

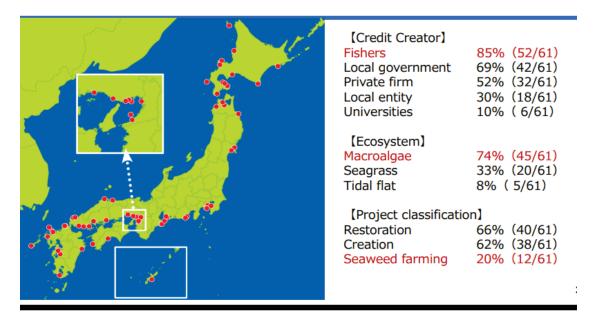
Citation from the presentation material by Dr. Atsushi Watanabe (OPRI)

Reasons for introducing Japan BC


- ➤ BC Credit market by JBC Association
- ➤ Scientific researches for seagrass, mangrove etc.
- ➤ J-Blue Credit guideline
- ➤ Possibility to make income to local communities
- ➤ Incentives for conservation including restoration and creation of wetlands

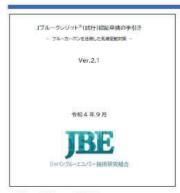
39

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

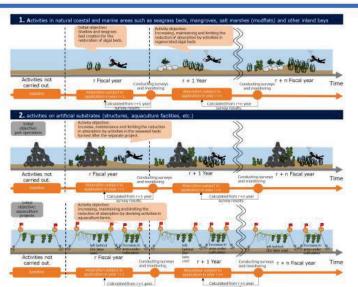


Benefits from BC ecosystems

J-Blue Credit® projects in Japan 22



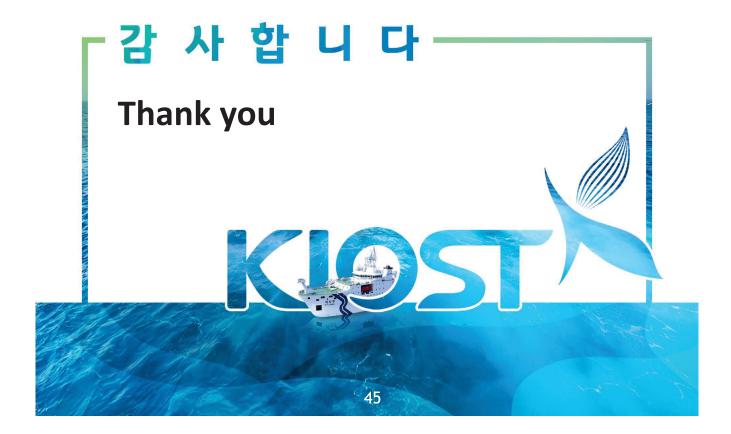
41


Ⅱ. KIOST의 해양과학기술 공유 플랫폼

J-Blue Credit Guideline

Ver.1 Jan. 2022 Ver.2 Sep. 2022 Ver.2.2.1. Mar. 2023 Ver.2.3. Aug. 2023 Ver.2.5. Mar.2025 (English version under preparation)

Summary and conclusion:


43

Ⅱ. KIOST의 해양과학기술 공유 플랫폼

- ✓ Internalizing economic value of nonmarket goods into framework of B/C Analysis
- ✓ Interdisciplinary collaboration: all field experts
- ✓ Training and institutional capacity building for changeover thought: importance of public goods (or service)
- ✓ Development business model like Blue Carbon
- ✓ Networks network: sharing data, experience, best practice, green technology and governance

