

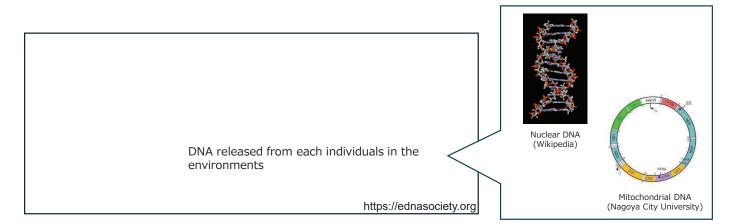
Monitoring of estuarine fish compositions using an environmental DNA metabarcoding

Shinya Hosokawa

Head of Marine Environmental Information Group, Port and Airport Research Institute (PARI), Japan eviation Technology. All rights reserved.

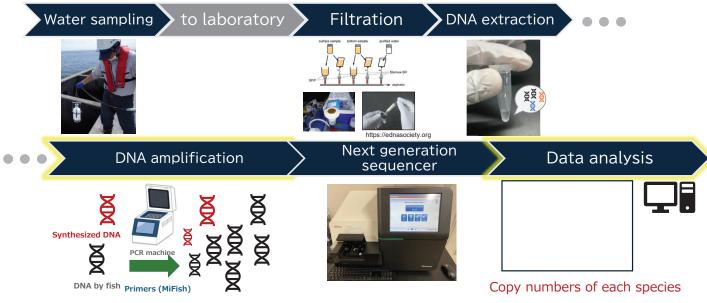
Copyright © 国立研究開発法人海上・港湾・航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

Topics


- What's environmental DNA (eDNA)?
- Advantages of the eDNA technology
- Challenges in using eDNA technology in estuaries and coasts
- What will eDNA technologies contribute?
- Collaborations with open data platform
- Conclusions

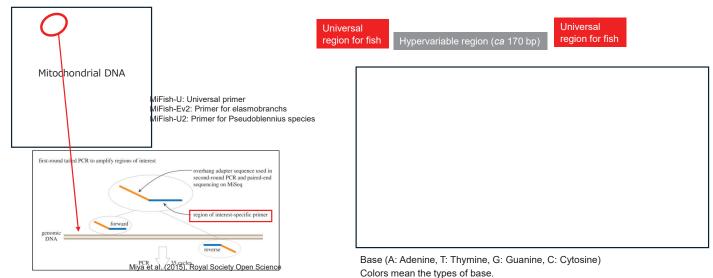
What's environmental DNA (eDNA)?

- Environmental DNA (eDNA): DNA released in the environments
- eDNA technology: Technology for detecting trace amounts of eDNA


Copyright ◎ 国立研究開発法人海上・港湾・航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

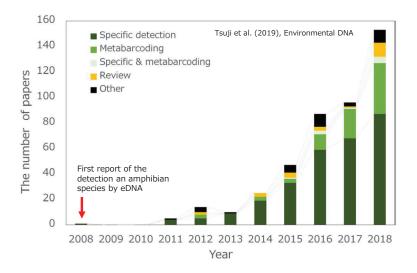
3 /22

What's environmental DNA (eDNA)?


A process for detecting fish species using eDNA technology

What's environmental DNA (eDNA)?

- Detection performance is dependent on "primers."
- MiFish is a powerful primer set for detecting fish composition.

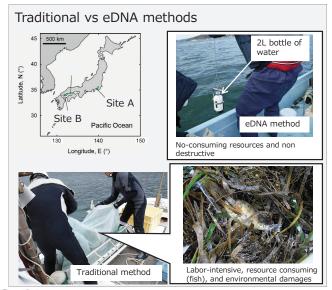

Copyright © 国立研究開発法人海上・港湾・航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

5 /22

What's environmental DNA (eDNA)?

- Widely studied and used in the fields of research and development
- Many suppliers of the eDNA technology (in Japan)

Specific detection:

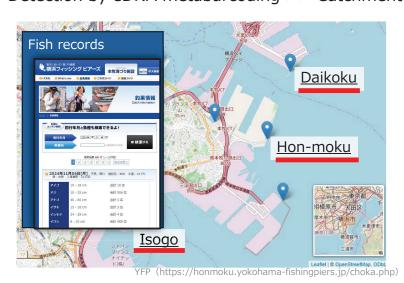

Metabarcoding:

Advantages of the eDNA technology

- Performance of the eDNA metabarcoding in fish species
- Detection by eDNA metabarcoding >> Catchment by a traditional method

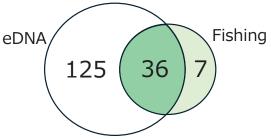
	Site A (Kurihama Bay)	Site B (Kasado Bay)
Traditional and eDNA methods	Acentrogobius pflaumii (21/24)	Acentrogobius pflaumii (13/24)
	Aulichthys japonicus (1/24)	Paracentropogon rubripinnis (1/24)
	Ditrema viride (24/24)	Pseudoblennius cottoides (3/24)
	Favonigobius gymnauchen (10/24)	Rudarius ercodes (9/12)
	Gobiidae (24/24)	Sebastes cheni (15/24)
	Heteromycteris japonica (1/24)	Sebastes inermis (15/24)
	Paracentropogon rubripinnis (22/24)	Syngnathus schlegeli (1/24)
	Plotosus japonicus (2/24)	
	Pseudoblennius cottoides (7/24)	
	Pseudoblennius percoides (7/24)	
	Pterogobius (5/24)	
	Rudarius ercodes (14/24)	
	Sebastes cheni (19/24)	
	Sebastes inermis (19/24)	
	Syngnathus schlegeli (1/24)	
	Takifugu pardalis (23/24)	
Only traditional	Apogonichthyoides niger	Hippocampus coronatus
	Hippocampus coronatus	
	Pholis crassispina	
Only eDNA	Carassius cuvieri, ゲンゴロウブナ (1/24)	Carassius spp., フナの種 (3/24)
	Cyprinus carpio, ⊐ イ (21/24)	Lepomis macrochirus, ブルーギル (1/24)
	Oncorhynchus sp., タイヘイヨウサケ属の1種 (1/24)	Other 44 species
	Paramisaurnus. ドジョウ属 (1/24)	
	Other 58 species	

Hosokawa et al. (2020), Tech Note PARI, No.1373


Copyright © 国立研究開発法人海上·港湾·航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

7 /22

Advantages of the eDNA technology



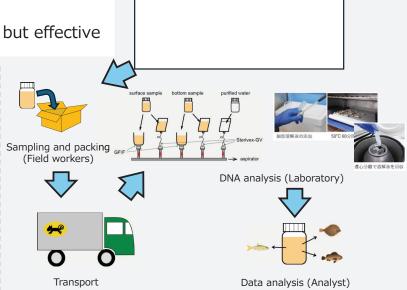
- Performance of the eDNA metabarcoding in fish species
- Detection by eDNA metabarcoding >> Catchment by fishing

- Fish records by the Yokohama Fishing Piers (YFP)
- eDNA sampling and metabarcoding analysis

Between January 2021 and March 2023

Munakata et al. (2024), the 71st Coastal Engineering, JSCE

Advantages of the eDNA technology



Non-destructive

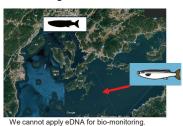
Cost-effective: Need several processes but effective

Methods using eDNA technology

Copyright ◎ 国立研究開発法人海上·港湾·航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

9 /22

Challenges in using eDNA technology in estuaries and coasts


• Does the eDNA distribution mean the fish distribution?

Suitable eDNA degradation:

We can use eDNA for bio-monitoring.

Without eDNA degradation:

Residence time of water in Tokyo Bay

40

80

100

100

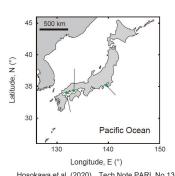
20

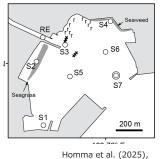
30

40

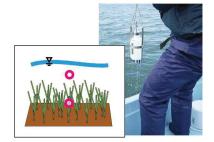
50

Days


Collins et al. (2018) Communications Biology



Challenges in using eDNA technology in estuaries and coasts



• Thousands of meters of dispersal in marine areas (Jo et al. 2025)

Environmental DNA

Hosokawa & Homma (under review) Environmental DNA

Momota et al. (2022), MEPS

Hosokawa et al. (2020), Tech Note PARI, No.1373 Hosokawa et al. (2023), Tech Note PARI, No.1406

√ Regional scale

√ Tokyo Bay scale

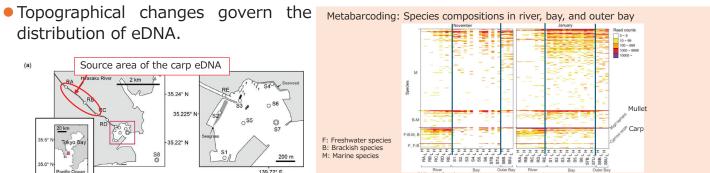
Hundreds of kilometer Few meters

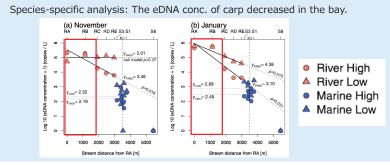
Spatial scale

Copyright © 国立研究開発法人海上・港湾・航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

11 /22

Challenges in using eDNA technology in estuaries and coasts

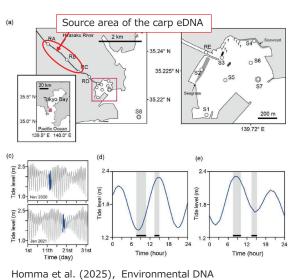

distribution of eDNA.

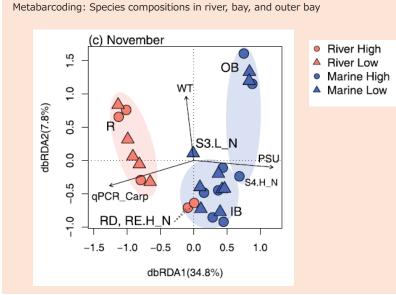


Time (hour)

Time (hour)

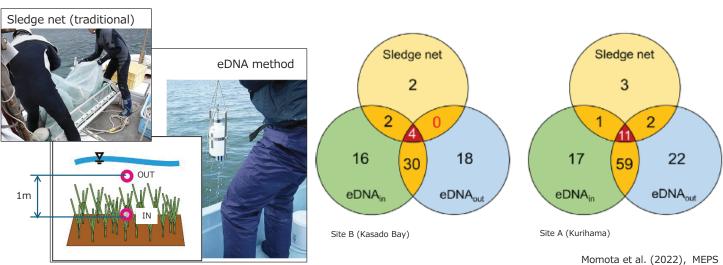
Homma et al. (2025), Environmental DNA





Challenges in using eDNA technology in estuaries and coasts

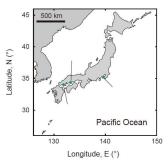
• Geographical transition zone is not suitable for eDNA monitoring.

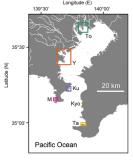

Copyright © 国立研究開発法人海上·港湾·航空技術研究所/National Institute of Maritime, Port and Aviation Technology, All rights reserved.

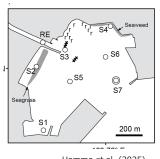
Challenges in using eDNA technology in estuaries and coasts

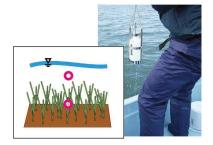
13 /22

• eDNA captures the small-scale heterogeneity of fish diversity in the vegetations.






Challenges in using eDNA technology in estuaries and coasts



- Thousands of meters of dispersal in marine areas (Jo et al. 2025)
- Topography and vegetations are key factors of the eDNA distributions in fine scale.

Hosokawa et al. (2020), Tech Note PARI, No.1373 Hosokawa et al. (2023), Tech Note PARI, No.1406 Hosokawa & Homma (under review) Environmental DNA

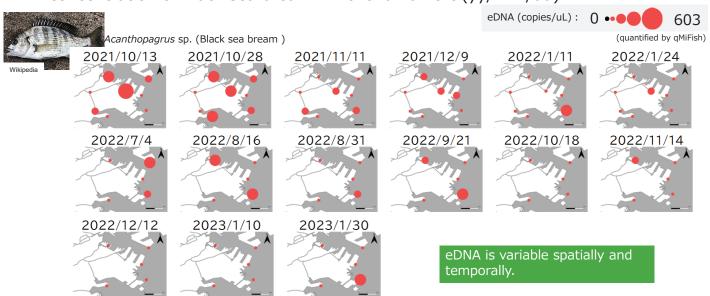
Homma et al. (2025), Environmental DNA Momota et al. (2022), MEPS

✓ Regional scale

✓ Tokyo Bay scale

Hundreds of kilometer Few meters

Spatial scale


Copyright © 国立研究開発法人海上・港湾・航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

15 /22

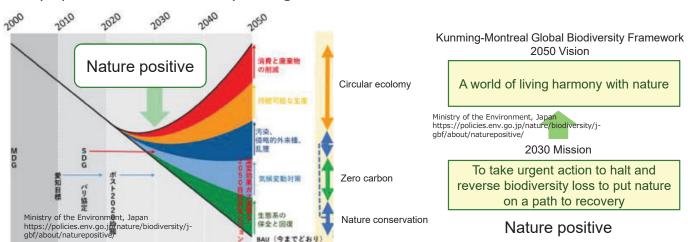
Challenges in using eDNA technology in estuaries and coasts

DNA concentration of Black sea bream in Yokohama Port (yy/mm/dd)

Munakata et al. (2024), the $71^{\text{st}}\,\text{Coastal}$ Engineering, JSCE

What will eDNA technologies contribute?

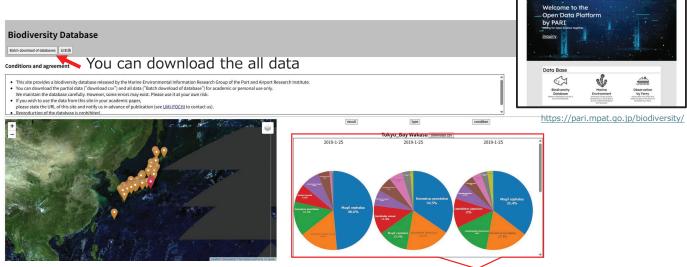
- Vegetations have been damaged by the mottled spinefoot in recent years.
- eDNA can detect the presence of the mottled spinefoot along the Pacific Ocean.


Copyright © 国立研究開発法人海上·港湾·航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

What will eDNA technologies contribute?

17 /22

- Monitoring for the biodiversity change is important. However, targets are unclear.
- eDNA metabarcoding can capture the biodiversity and is suitable for the monitoring many species and biodiversity changes.



Collaborations with open data platform

Visualization tool for eDNA data (UMI-POCHI)

UMI-POCHI is an open data platform produced in PARI

Visualization of the eDNA results

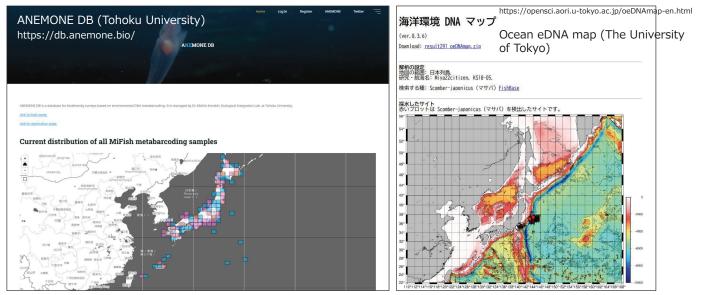
Copyright © 国立研究開発法人海上・港湾・航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

19 /22

Collaborations with open data platform

- Dense eDNA data in Tokyo Bay and Kasado Bay
- Why don't you share your eDNA data?

"UMI-POCHI"



Collaborations with open data platform

 Open data platforms that share eDNA data are being launched to accelerate scientific progress.

Copyright © 国立研究開発法人海上·港湾·航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.

Conclusions

21 /22

- Environmental DNA (eDNA) technologies are non-destructive and cost-effective, and demonstrate good performance.
- Challenges remain in using eDNA technology in estuaries and coasts. However, eDNA technology is a powerful tool for capturing the spatial scale greater than several kilometers.
- eDNA technologies will serve as a tool for monitoring invasive species and biodiversity changes.
- Open data platforms that share eDNA data are being launched. Collaborating with the platform will accelerate scientific progress based on eDNA data.

Thank you for your attention

Acknowledgements

Our eDNA researches were supported by the Yokohama Research and Engineering Office for Port and Airport of the Kanto Regional Development Bureau, and by the Hiroshima Research and Engineering Office for Port and Airport of the Chugoku Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism

Copyright © 国立研究開発法人海上·港湾·航空技術研究所/National Institute of Maritime, Port and Aviation Technology. All rights reserved.