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1. Introduction 
 
Crane barge, shown in Fig. 1, is an indispensable vessel for marine construction works and 
various cargo handling operations at sea. When handle cargoes using a crane barge, the hull and 
suspended loads are usually shaken due to waves. The prediction and control of the shaking or 
oscillation are extremely important from the viewpoint of safety operation, increase the effective 
working days, accurate construction work and so on. To predict the oscillation, Nojiri and Mita 
(1980) have developed a computation method for coupled motions of crane barge and suspended 
load based on a linear theory. They have found that the developed method is able to explain the 
characteristics of coupled motions by comparing the predictions with the experimental results 
using a 1/50 scale model of 2500 tons crane barge. 
 
 

 
 

Figure 1: Sketch of crane barge  
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Before lifting the suspended loads, slinging work has to be done; that is hanging the load on hook 
using a hooking tool such as wire ropes. In the case of crane barge, a U-shaped shackle is 
attached to the tip of a wire hanging from the hook in advance. Then the shackle is connected to 
the lifting lug welded onto the load for slinging work. The shackle weight for a load of 100 tons is 
from 150 to 250 kg for the crane work when using a large crane barge. In the open ocean, these 
large shackles swing with large amplitudes as shown in Fig. 2. Even in calm sea conditions where 
the significant wave height is 0.5 m or less, the workers cannot catch the shackles and cannot 
continue the crane work. In this way, the operation rate of construction work is greatly affected 
depending on whether the slinging can be done or not. 
 
Therefore, since the shaking prediction of shackle is important, we developed and proposed a 
numerical model for coupling of double pendulum motions of hook, shackle and ship motions 
based on a linear theory, especially to predict the motion of shackle on a crane barge. 
 
 

  

  
 

Figure 2: Swinging shackles during slinging work 
 
 
2. Numerical Model 
 
2.1. Coupling model of motions and coordinate system 
 
The numerical model proposed here to predict the motion of crane barge is a radiation/diffraction 
panel model based on the linear theory. The model considers the interaction between surface 
waves and crane barge is based on a three-dimensional panel method. 

 
It is assumed in this model that waves and hull motions are small and the infinite domain is 
analyzed by the linear theory. The fluid is assumed to be non-viscous, incompressible and 
irrotational motion being described by a velocity potential. A crane barge is modeled as a 
box-shaped three-dimensional rigid body. 
 
In the Cartesian coordinate system (X, Y, Z), as shown in Fig. 3, the X and Y axes are set on the 
still water surface and the Z axis is in the vertical downward direction, and the center of the hull is 
set as the origin O. The translational motion in each axis direction is denoted as X1 for surge, X2 for 
sway, X3 for heave, and the rotational motion around each axis is denoted as X4 for roll, X5 for pitch 
and X6 for yaw. The hook and the shackle are suspended from the jib top located at (lx, ly, lz). A 
hook's x direction motion in the XZ plane is denoted as X7, shackle’s x direction motion as X8, in the 



YZ plane X9 is for hook’s y direction motion and X10 for shackle’s y direction motion. Thus, the 
motion modes of crane barge, hook and shackle are denoted as Xj (j = 1 to 10). The β is the angle 
between the incident direction wave and the positive X axis as defined in Fig. 3. 
 
 

 
 

Figure 3: Coordinate system 
 
 
2.2. Governing equation 
 
2.2.1. Double pendulum motions of hook and shackle  
 
The hook and shackle of a crane barge show double pendulum motions fixed at a jib top. The 
motions of the hook and shackle are caused by motion of the jib top. The motions of hook and 
shackle in the XZ plane are shown in Fig. 4. The length of the hanging from the jib top to hook is l7, 
the length of the hanging from hook to shackle l8, and the length of hanging from the jib top to 
shackle l (=l7+l8). The hook weight is m1, shackle weight m2, and the total hanging weight m 
(=m7+m8). In the XZ plane, the horizontal displacement and swing angle of hook are X7 and φ7, 
those of shackle X8 and φ8, and the horizontal displacement of the jib top Xj-xz. Relationship 
between the horizontal movement distance of the hook and the shackle and the swing angle is 
expressed by the formula of Eq. (1). 
 
 

 
 

Figure 4: Double pendulum model consist of hook and shackle 
 = +  = + +  (1) 
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The motions of the hook and shackle in the XZ plane can be expressed by the Lagrange equation 
of Eq. (2). The determinants A, B, C and D are given by Eq. (3). 
 ̈̈ + ̇̇ + =  (2) 
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where c7 and c8 are the damping coefficients related to the damping force term proportional to the 
horizontal displacement speed. The displacement of the jib top can be expressed by Eq. (4) 
derived from the movement of crane barge. 
 = + −  (4) 
 
Similarly, the motion of hook and shackle in the YZ plane can be calculated by the simultaneous 
differential equations of hook X9 and shackle X10. In the YZ plane, it is sufficient to give the 
displacement Xj-yz of the jib top as Eq. (5) from the movement of crane barge. 
 

 
 
2.2.2. Analysis method of hull motion 
 
Generally, wave-exciting force (Froude-Krylova force + diffraction force), radiation force, and static 
restoring force act on a floating body moving in waves. In addition to these forces, a coupled force 
acts on the jib top of crane barge as a dynamic reaction force due to the double pendulum motions 
of hook and shackle. Therefore, the equation of motions of crane barge is expressed as Eq. (6). 
 

̈ ( ) = ( ) + ( ) + ( ) + ( ) (6) 

 
where FDi(t) : the wave-exciting force, FRi(t) : the radiation force, FSi(t) : the static restoring force, 
FCi(t) : the coupled force by hook and shackle double pendulum motions. 
 
In this model, wind drag force, flow drag force, mooring force and other environmental external 
forces are not considered. Wave-exciting force and radiation force are calculated from 
three-dimensional velocity potential using the three dimensional singularity distribution method 
(e.g. Tsutsumi et al., 1974, or Inglis and Price, 1980). The static restoring force is calculated from 
the balance between the center of hull’s gravity and buoyancy forces. 
 
 
1)  : Wave-exciting force 
 
As shown in Fig. 5, the force (wave-exciting force and radiation force) that the hull of crane barge 
receives from the water surface is calculated by adding the fluid fluctuating pressure p(P, t) acting 

= + −  (5) 



on the point P(xp, yp, zp) in the total surface area SH. As shown in Eq. (7), the fluid fluctuation 
pressure of waves is calculated by the speed potential with a normal vector ni. 
 

( ) = − ( , ) ( ) = ρ Φ ( , ) ( )  (7) 

 
 

 
 
 

Figure 5: Discretization of hull under the water surface to a microscopic plane element 
 
 

The velocity potential ΦD(P,t) related to wave-exciting force is given by Eq. (8); ΦD(P,t) is the sum of 
the incident wave velocity potential Φ0(P,t) and the velocity potential Φ7(P,t) of the fluid dispersion 
resulting from the hull reflection disturbance. 
 Φ ( , ) = Φ ( , ) + Φ ( , ) (8) 
 
 
2)  : Radiation force 
 
Similarly, the radiation force is expressed as Eq. (9) using the velocity potential. 
 

( ) = − ( , ) ( ) = ρ Φ ( , ) ( )  (9) 

 
The velocity potential ΦR(P,t) of the radiation force is the sum of velocity potential Φj(P,t) caused by 
waves consisting of motion mode (j = 1 to 6) of the hull of crane barge, described as Eq. (10). 
 

Φ ( , ) = Φ ( , ) (10) 

 
The velocity potential Φj(P,t) fluctuates with time. Specifically, it is calculated from Eq. (11) by the 
convolution operation of the impulse velocity potential ΔΦj(P,t) by an unit velocity and the motion 
speed X

．
j(t) from the past to present time t as follows: 

 

Φ ( , ) = ∆Φ ( , − ) ̇ ( )  (11) 



Impulse velocity potential ΔΦj(P,t) by an unit velocity is calculated by Eq. (12) (Takagi and Arai, 
1996) bellow. 
 ∆Φ ( , ) = Ω ( ) ( ) + Γ ( , ) ( ) (12) 
 
where, δ(t) : the delta function (δ(t)=0 for t≠0, δ(t)=∞ for t=0), H(t) : Heaviside function (H(t)=1 for t≥0, 
H(t)=0 for t<0), Ωj(P) : the velocity potential of turbulent wave in the vicinity of the hull, Γj(P,t) : the 
velocity potential of divergent wave from the hull in far of the hull. 
 
Therefore, the radiation force is given by Eqs. (13) and (14). 
 

( ) = Ω ( ) ( ) ̈ ( ) + Γ ( , − ) ( ) ̇ ( )  
= − (∞) ̈ ( ) − L ( − ) ̇ ( )  

(13) 

 
(∞) = − ∫ Ω ( ) ( )  

( ) = − Γ ( , − ) ( )  (14) 

 
where, mij(∞) : the additional mass coefficient at ω=∞ (generally not zero), Lij(t) : the memory 
influence function of fluid force. 
 
 
3)  : static restoring force 
 
As shown in Eqs. (15) and (16), the static restoring force is expressed using the modes ij = 33, 35, 
53, 44, and 55. The other modes of Cij are zero. 
 

( ) = ( ) (15) 

 =  

= =  

= ∇  = ∇  
(16) 

 
where, AW is the area of waterline surface, GMB the horizontal meta center height, GML the 
vertical meta center height, ∇ the displacement, as shown in Fig. 6. 
 
 

 
 

Figure 6: Meta center height appeared in Eq. (6) 



4)  : Coupled force by hook and shackle motions 
 
The coupled force due to the double pendulum motions of hook and shackle act on the jib top of 
crane barge. The coupled force is expressed by Eq. (17). 
 ( ) = { ̈ ( ) ̈ ( ) ⋯ ̈ ( )}  (17) 
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2.2.3. Cross-coupling force 
 
The equation of motions of crane barge, hook, and shackle is summarized in a form of the 
second-order linear differential equations as Eq. (19). 
 

+ (∞) ̈ ( ) + ( − ) ̇ ( ) + ( ) = ( ) (19) 

 
where, mij is the generalized mass, mij(∞) the additional mass when frequency is infinite, Lij(t) the 
memory influence function, Cij the restitution coefficient, Ei(t) the wave-exciting force. 
 
Since the hook and shackle constitute a double pendulum, the hook and shackle influence each 
other and induce irregular response even if regular external forces are acted. Therefore, the 
coupling equation as a function of time must be solved as an initial value problem. 
 
First, Lij(t) on the left side of Eq. (19) can be obtained from Fourier transformation of the wave 
damping coefficient Bij(t). 
 

( ) = 2 ( ) cos( )  (20) 

 
Next, Ei(t) is obtained by solving the integral equation based on the Green function in the time 
domain for the velocity potential under the boundary condition. The calculation of the Green 
function in the time domain requires a large amount of storage capacity and computation time; it is 
not suitable for analyzing the influence of the shape parameter of crane barge by changing its 
value. Therefore, in this study, by using the radiation velocity potential obtained in the process of 
calculating the memory influence function, the wave-exciting force is calculated by the Haskind 
relation (Takagi and Arai, 1996) from the radiation velocity potential. 
 
Assuming that the impulse response function is ei(t) and the time series of the wave height is h(t), 
the wave-exciting force Ei(t) becomes Eq. (21). 
 

( ) = ℎ( − ) ( )  (21) 

 
Here, h(t) is the water surface variation of irregular wave estimated from the wave spectrum. Eq. 
(19) describes the equation of motions of crane barge at the origin O shown in Fig. 3; that is, h(t) is 
the water surface variation at the origin. In this analysis, the irregular wave spectrum is given as 
Bretschneider spectrum. 



The impulse response function, ei(t), is obtained from the Fourier transform of the response 
function Hi(t) of the wave-exciting force as follows. 
 

( ) = [ 12 ( )  ] (22) 

 
 
3. Hydraulic Experiments 
 
3.1. Hydraulic experiments of crane barge motion (Nojiri and Mita, 1980) 
 
First, the verification of the present coupling motion model of the crane barge, hook and shackle 
was carried out using the results obtained by Nojiri and Mita (1980). They measured the frequency 
response of a crane barge motion in a two-dimensional wave flume. Table 1 shows the main 
specifications of the experiments. 
 
The suspended load in their experiment is treated as a hook weight. Figs. 7 and 8 show the 
comparison of the roll of crane barge and the hook swing angle respectively. The horizontal axis is 
the dimensionless frequency of the incident wave using the ship width B and gravity g, the vertical 
axis is the dimensionless amplitude of the hook swing angle divided by the wave slope (ka: k is the 
wave number, a is the wave amplitude). It is seen from the figures that the present numerical 
model gives good predictions of coupled motions of the crane barge and hook for roll and swing 
against all range of frequency with slight difference at the peak values. 
 
 

Table 1: Main specifications of experiments 
 

Item Symbol BARGE A BARGE B 
hull length L  (m) 2.470 2.470 
hull width B  (m) 0.800 0.500 

draft d  (m) 0.100 0.200 

jib top coordinates 
lx  (m) 0 0 
ly  (m) 0.425 0.425 
lz  (m) 0.750 0.650 

hook weight m  (kg) 6.000 6.000 
length of hanging l  (m) 0.408 0.300 

 
 

    
 

Figure 7: Comparison of the roll of crane barge 
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Figure 8: Comparison of the hook swing angle 
 
 

3.2. Experiments of double pendulum motions 
 
Next, to verify the present numerical model of the double pendulum motions of hook and shackle, 
laboratory experiments using an exciter was performed. A conceptual diagram and phots of the 
laboratory experiment are shown in Fig. 9. 
 
In these experiments, the horizontal displacement of the jip, which is a fulcrum of a pendulum, was 
provided by an exciter (SSV-125, SANESU). The swing response of hook and shackle was 
measured. The motions of hook and shackle were measured with two video cameras 
(SSC-DC690, SONY) where the motions of light reflective markers attached to hook and shackle 
were taken and converted into displacement by image analysis. 
 
 

 
 

Figure 9: Conceptual diagram and phots of the laboratory motion experiments  
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The scale of experiments was 1/20, and the scaling was done according to Froude law. The 
exciter motion of the jib top was changed as two kinds of waveforms: a sinusoidal waveform and 
an irregular waveform exerted 50 waves or more. There were two experimental cases with 
different hanging lengths, as shown in Table 2. CASE-A is a reproduction of the construction work 
condition using a steel pipe pile by crane barge. Slingers connecting hook and shackle from jib top 
used in this experiment were synthetic polyvinylidene fluoride with low elongation at break. 
 
The time series of motions of hook and shackle are shown in Figs. 10 and 11, respectively, when 
the jib top is subjected to sinusoidal excitations of 8 s period in the prototype scale. The vertical 
axis is the dimensionless swing amplitude normalized by the amplitude of the jib top motion. The 
predicted results agree well with the experimental data. The swing of hook has two peak periods of 
8 s and 16 s in Figs. 10 and 11. Experimental motions seem to have a very long period trend 
compared to the calculated ones; this phenomenon is considered to be due to the influence of the 
longitudinal sling's vibration in the longitudinal direction, although slingers with low elongation at 
break were used. 
 
The calculated value of shackle has the same swing amplitude and period trend as the 
experimental value; however, the amplitude is slightly smaller than the experimental value. In the 
calculation, the damping coefficient c8 = 0.05 of the sling, determined from the measured swing 
amplitude of the shackle of the actual machine in sea waves, is considered. However, in the 
experiment, the shackle weight is m8 = 0.003 kg and the estimated value of the damping coefficient 
c8 is somewhat larger. 

 
Table 2: Experimental cases of hanging length in protptype scale 

 

 
CASE-A CASE-B 

model actual model actual 

hook 
length of hanging l7 (m) 3.25 65.0 4.00 80.0 

weight m7 (kg) 1.3 10,000 1.3 10,000 

shackle 
length of hanging l8 (m) 1.25 25.0 0.50 10.0 

weight m8 (kg) 0.003 20.0 0.003 20.0 
 

 
 

Figure 10: Time series of hook motion in regular excitation (CASE-A) 
 

 
 

Figure 11: Time series of shackle motion in regular excitation (CASE-A) 
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Figure 12 shows a comparison between experimental and calculated significant swing amplitudes 
of hook and shackle when irregular excitation is applied to the jib top.  The excitation direction of 
the jib top, simulating waves, is 45° with respect to the ship axis. The horizontal excitation 
displacement is given as 1 m corresponding to the incident significant wave height. The horizontal 
axis of Fig. 12 is the incident significant wave period, and the vertical axis the significant swing 
amplitude Xs of the hook and shackle normalized by the significant excitation amplitude Xj of the jib 
top. 
 
It is seen that in CASE-A the shackle oscillates around the hook with large amplitude of which ratio 
is from 8 to 10 at any periods. Those phenomena are well predicted by the present numerical 
model. It is also seen that the dimensionless hook and shackle motions are small in the range from 
1.0 to 2.0, and predictions agree well with the experimental values.  
 
By checking all experimental and calculated results, the validity of the present numerical model 
was ascertained for the crane barge motion and double pendulum motions of hook and shackle. 
 
 

  
 

Figure 12: Dimensionless significant oscillation amplitude of hook and shackle in irregular 
excitation 

 
 
4. Discussion 
 
The proposed and validated numerical model was employed to investigate the oscillation 
characteristics of a crane barge, hook and shackle in waves. The analysis was conducted on a 
1,600 tons crane barge (prototype size: L = 106 m, B = 43 m, d = 4.35 m). The hook and shackle 
were assumed to be suspended from the jib top of which position (lx, ly, lz) = (50 m, 30 m, -95 m), 
and their weights were set to m7 = 10 tons and m8 = 0.02 tons. 
 
Firstly, the frequency characteristics of jib top, hook and shackle motions in waves were 
investigated by spectral analysis. Figure 13 shows the frequency spectra of jib top, hook and 
shackle motions in CASE-1 where the hook is located 25 m above the shackle and waves attack 
from 45° angle to the ship’s X axis. The significant wave height and period are 1 m and 10 s, 
respectively. The natural oscillation periods of hook (T7) and shackle (T8) are summarized in Table 
3, assuming that the righthand side of Eq. (2) is zero. As the position of the hook becomes lower, 
T7 becomes short, and conversely, T8 becomes long. 
 
The jib-top motion spectrum has a peak around 0.1 Hz corresponding to the incident wave 
spectrum. On the other hand, the hook motion spectrum has a peak around 0.06 Hz on the low 
frequency side. The shackle motion spectrum has a sharp peak at 0.1 Hz and another peak 
around 0.06 Hz. Thus, it can be seen that each motion has different frequency characteristics. 
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Figure 13: Frequency spectrum of jib top, hook, shackle motion 
 
Subsequently, we examined the characteristics of shackle motion under the conditions that the 
position of shackle was the same (constant) and the hook was changed its position from 25 m to 5 
m above the shackle at an interval of 5 m (denoted as CASE-1 to CASE-5). Fig. 14 shows the 
dimensionless significant amplitude of shackle motion against the wave period when irregular 
wave incidence is 45° from the ship axis.  
 
In the case that the hook is as high as 25 m above the shackle (CASE-1), the shackle is severely 
shaken by waves with 10 s period. The significant amplitude of this motion is 17 m. On the other 
hand, in the case of hysteresis of hook as low as 5 m above shackle (CASE-5), the oscillation is 
small and the significant amplitude is 1 m. 
 
In CASE-1 to CASE-3, the peak of the shackle's significant amplitude largely appears to be around 
T7. On the other hand, in CASE-4 to CASE-5, the peak of the shackle's significant amplitude 
appears to be on the long period around T8. For waves with a wide range of periods seen in field 
ocean, if the natural periods T7 and T8 are close to each other, there is a high possibility that the 
oscillation of shackle will increase synchronously with the wave period. Therefore, if the distance 
between the hook and the shackle can be set so that the interval between T1 and T2 is large, the 
oscillation of the shackle can be reduced. 
 
 

Table 3: Natural period of hook and shackle 
 

 CASE-1 CASE-2 CASE-3 CASE-4 CASE-5 
T7 (s) 10.02 8.96 7.76 6.34 4.48 
T8 (s) 16.19 16.80 17.39 17.95 18.51 

 
 

  
 

Figure 14: Dimensionless significant oscillation amplitude of shackle by changing hook position 
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Based on this finding, we actually measured the shaking motion by changing the distance between the 
hook and shackle from 6 m to 2 m, using a 200 tons crane barge as shown in Fig. 15. It is found that 
the significant amplitude of shackle oscillation could be reduced from 4.2 m to 1.9 m, which turns to 
be a 55% reduction. 
 
 

 
 

Figure 15: Field observation of hook and shackle motion hanged from a jib top of crane barge 



5. Conclusions 
 
We have developed a numerical model to analyse the cross-coupled motion between a crane 
barge in waves and a double pendulum consisted of hook and shackle. A set of experimental data 
was used to validate the model. The validated model is able to reproduce the swing motion of 
hook on a crane-barge. One of the objectives of the present study is how to reduce the swing 
motion of shackles using the numerical simulation model. The important conclusions of this study 
are summarized as follows. 
 
1) The motion of shackle on a crane barge can be well predicted using the coupling model of 

motions proposed in this study. 
2) The motion of shackle on a crane barge is larger than that of hook, and the motion of shackle is 

important in slinging work. The success or failure of slinging work significantly influences the 
rate of effective working days of maritime construction work. 

3) When performing the slinging work, the swinging amplitude of shackle can be reduced by 
shortening the distance between the hook and shackle. This finding is especially important for 
the safety of marine construction work. 

 
We believe that application of this research makes the development of accuracy and safety 
technologies in actual marine crane work. 
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